

951

Abstract

To facilitate efficient and rapid development of auto-
mated, microwave-frequency measurements for in-orbit test
(IOT) and monitoring systems, an engineered platform
architecture of generic software functions was designed and
implemented at COMSAT Laboratories over the past several
years. The Measurement Processing and Control Platform
(MPCP) provides the measurement developer an operating
system-like set of field-tested, reusable building blocks for
such tasks as instrument and IEEE-488 bus control; graphi-
cal user interfaces (GUIs) supporting OSF/Motif-compliant
X Windows; measurement scheduling; interprocess/interma-
chine communications; database management; and printing
and plotting services. With pretested building blocks, IOT
and monitoring systems can be implemented with shorter
development times and reduced overall system cost. MPCP
runs under the UNIX System V operating system on work-
stations, providing multiuser, multitasking capabilities to the
IOT system, as well as extensive networking capabilities,
including remote control. This platform architecture is con-
trasted with an alternative approach in which each measure-
ment is a self-contained entity, which results in significant
code duplication, inconsistency, and lack of software robust-
ness, as well as difficult maintenance, upgradability, and
expandability. This paper discusses the tasks performed by
automated measurements, and the services provided by
MPCP modules for performing these tasks.

Introduction

As satellites become more complex, the number of mea-
surements required to test them in orbit, as well as the data
volume, increase rapidly. As a result, required testing time
has grown substantially with each new generation of satel-
lite. Because testing time deprives the owner of revenue,
there has been steady pressure on IOT systems to keep this
time to a minimum. This pressure spurred the development
of IOT systems from early manually operated systems to
highly automated computer-controlled systems.

1

The most natural transition from manual measurement

systems to controlled ones is to program the computer to
mimic the actions of the manual system operator. Many IOT
and monitoring system developments follow this route,
resulting in self-contained measurement procedures, since

each measurement is developed as needed, replicating the
manual system operation. A very different development
approach stems from the observation that over 80 percent of
these self-contained procedures perform similar tasks (e.g.,
instrument control, user interface, data storage, etc.), while
only 20 percent is actually devoted to tasks that are unique to
the measurement at hand. This insight led to the develop-
ment of a fundamentally different architectural concept—an
integrated platform of specialized building blocks that per-
form the common measurement tasks which then form the
foundation for developing much simpler measurement pro-
cedures. Table 1 contrasts the major differences between
these two dissimilar system architectures and measurement
development methodologies.

Work started at COMSAT Laboratories about 10 years
ago for developing the holistic approach of a platform archi-
tecture, after employing the self-contained measurement
architecture for a number of years on earlier IOT and moni-
toring systems. This platform approach applies basic engi-
neering methods and practices such as top-down design
techniques, system and subsystem engineering and interface
definition, data flow analysis, modularization, specialization,
and layering concepts to the system’s architecture and not
just to the individual components. Tasks are allocated to
functional modules, and each module is specialized. By anal-
ogy with equipment design, the system engineering function
partitions the system into subsystems and modules. Each
module is implemented by a specialist. The amplifier
designer does not design the power supply. Each designer
specializes and focuses on his particular task, so that each
task can be done very well, improving overall system quality
and robustness. System engineering integrates the separate
parts into a cohesive whole.

The work at COMSAT Laboratories resulted in the Mea-
surement Processing and Control Platform (MPCP), which
provides an architectural foundation for implementing IOT
and monitoring systems rapidly and efficiently. A recently
deployed automated measurement system incorporating
MPCP is the EUTELSAT IOT system, depicted in Figure 1.

Common Measurement Tasks

In a single-measurement system, whether manually
operated or automated, one measurement at a time is per-
formed. A device-under-test (DUT) is stimulated in a known

IN-ORBIT TEST AND MONTORING SYSTEMS ARCHITECTURE*

Vasilis Riginos, Steve Teller, Pei-Hong Shen, and Walter Kelley
COMSAT Laboratories, Clarksburg, Maryland 20871-9475

* This paper is based on work performed at COMSAT Laboratories under the sponsorship of the Communications
Satellite Corporation (COMSAT).

Copyright

 1991 by Communications Satellite Corporation. Published by the American Institute of Aeronautics
and Astronautics, Inc. with permission.

AIAA-92-1936-CP

952

manner, and its response is measured. In a multiple-
measurement system, multiple measurements can be per-
formed at the same time. In addition, some control can be
exerted on the DUT such as setting parameters. For an IOT
facility, the DUT is a communications spacecraft in geosyn-
chronous orbit. In a manual system, the operator controls the
instruments, and records and processes the measurement
data. In an automated system, the computer controls the
instruments, and the operator becomes a user who interacts
with the computer rather than turning knobs and pressing
buttons on instruments. The computer is much faster and

more precise than a human operator, resulting in repeatable
measurements. The system is easier to use and can be oper-
ated by a less skilled user because more of the intelligence
resides in the computer’s software.

As satellites became more complex, later IOT systems
were used by two distinct groups of users: a technician-level
person skilled in standard earth station operations, and the
specialized spacecraft expert.With two distinct user groups,
other interface requirements were introduced: simplicity of
operation for the earth station technician, and flexibility of
measurement control for the spacecraft expert investigating
an anomaly or conducting in-orbit tests.

1

The computer-controlled measurement performs instru-
ment control, user interaction, and data processing consisting
of manipulation, storage and retrieval, and presentation. In
addition, the measurement architecture determines the struc-
ture and characteristics of the measurements. These tasks are
discussed briefly in the following paragraphs.

Instrument Control

All measurements, whether performed manually or
automatically, require instrument control, which is provided
by the skilled operator in a manually-operated system. The
operator sets up the instruments, monitors the instruments
while the measurement is being performed, checks the
results for integrity and validity, and responds to abnormal
and unexpected situations. In a manual system, the skilled
operator can discard erroneous or flawed data or repeat a
flawed measurement.

In a computer-controlled system, these tasks are per-
formed by the computer. The computer physically interfaces
to the instrument, handles exceptions, and ensures data
integrity and validity of instrument-supplied data. Instrument
control occurs via the IEEE-488 bus, RS-232, or some other
interface mechanism. Exception handling—the ability of the
computer to deal with abnormal or unexpected circum-
stances that can occur at unpredictable times—is one of the
many nontrivial tasks that must be performed in building
automated systems.

The User Interface

A second set of requirements for an automated IOT
measurement facility is provision for user interaction. Mea-
surements must provide a unified and consistent user inter-
face, and must address three problems pertaining to the
interface: validating user input, minimizing modal operation,
and providing suitable feedback to the user.

In an automated single-measurement system, the user no
longer directly interacts with the instruments, since these are
now under computer control. Rather, the user interacts with
the computer system to set up, parameterize, and control a
measurement. Because of this shift in the user’s role (i.e., no
longer an equipment operator), the computer must now han-

Table 1: Comparison of Measurement Approaches

Feature Self-Contained Platform

Design Effort

System Very Light Very Heavy

First Measurement Heavy Heavy

Next Measurement Heavy Light

Development Effort

System Very Light Heavy

First Measurement Moderate Moderate

Next Measurement Moderate Light

Life Cycle

Maintenance Difficult Easy

Expandability Moderate Easy

Portability Difficult Moderate

Evolution Difficult Easy

Quality

Methodology Ad Hoc Engineering

Robustness Low High

Consistency Low High

Capability

Remote Control Very Hard Moderate

Networking Very Hard Moderate

Concurrent Meas. Very Hard Moderate

Distributed Syst Very Hard Moderate

User Changes

*

Hard Easy

*

Ease of changing plot and print formats

953

dle the additional tasks of interacting with the user. In addi-
tion, there are now two user categories, as stated earlier. For
both user types, the computer must check the user’s input for
validity. For example, the user interface should detect erro-
neous input data that is out of range or of the wrong type
(e.g., alphabetic input when the expected input is numeric).

Second, the user interface should minimize modal
behavior. The user should be minimally restricted in the
actions that can be performed at any given time. The user
should be in control of the measurement, not the measure-
ment in control of the user. Maintaining user control is
achieved by minimizing modal behavior of the user inter-
face.

Since the user no longer interacts directly with the
instruments as in the manually operated system, the auto-
mated system must now provide the user with feedback on
the progress and status of the measurement. This feedback is
especially critical when the user, by setting up a measure-
ment that transmits a signal to the spacecraft, may acciden-
tally interfere with traffic. The user must be able to abort the
measurement if necessary, (e.g., if the test is interfering with
traffic or the antenna is pointing in the wrong direction). The
automated system, while relieving the user of tedious instru-
ment control tasks, must enable the user to remain in control
of the measurement situation. These user interface require-

ments complicate the design and implementation of auto-
mated test systems.

Data Processing Requirements

A third set of requirements for a simple, single-
measurement automated system relates to data processing. In
a manually operated system, the operator records and stores
the data (usually in a notebook), and then processes the data
into useful form by manually constructing plots and tables—
a labor-intensive, tedious, and time-consuming process.
Because of the tedium, only necessary plots are constructed,
restricting creative analysis and presentation of the measure-
ment data.

Data processing in the automated system involves three
activities: manipulation, storage and retrieval, and presenta-
tion. Raw data may require additional manipulation, such as
computations, averaging of several data sets, statistical anal-
ysis, and digital filtering. Second, the raw and processed data
must be conveniently stored and retrieved from a database.
The final output is information presented in a useful and
comprehensible form to the people who use it to make deci-
sions. The processed data are usually plotted and/or printed
for reports. The automated system should be equipped with a
hard disk, a plotter, and a high-quality printer to support
these data processing requirements.

Figure 1.

EUTELSAT IOT System Installation Uses MPCP Software Components

954

Measurement Architecture

When implementing automated measurements, the
architecture of the measurement itself is a critical consider-
ation addressed during the design phase. Many years of
experience in designing and implementing a large number of
diverse IOT measurements at COMSAT Laboratories led to
the realization that the measurements, while different in their
specifics, shared many tasks in common.

2,3,4

 This insight led
to the concept of the desirability of separating common mea-
surement functions from those associated with a specific
measurement.All measurements require instrument control,
user interaction, and data processing capabilities. These
common tasks can be separated from measurement-specific
elements. Each task can then be designed and implemented
once as a modular unit, centralizing and specializing the
function, and avoiding duplication of tasks from one mea-
surement to the next.

 Further, if this architectural separation is done properly
during the design phase, the common task implementation
offers the potential for

reusability

, not only from one mea-
surement to the next, but from one system to the next. By
building and perfecting a set of common building blocks,
new systems can be built with a substantially reduced soft-
ware development load, with its attendant high costs due to
labor intensity and lengthy development time. Available
software development resources (i.e., time, money, highly
skilled labor, equipment, facilities) can then be focused on
application-specific measurements, rather than on the sup-
porting infrastructure. This architecture results in systems
with shorter overall development time and greater reliability
because they incorporate previously tested building blocks.
Once conceptualized as an integrated, modular measurement
architecture, each module is designed, coded, tested,
debugged, integrated, and documented once. Each module
can be refined independently without disturbing others.

Other tasks are common across the various measure-
ments. All measurements must alarm the user when certain
conditions are encountered. Similarly, instrument control
involves many common tasks, independent of the particular
instrument. For example, all instrument drivers also handle
exceptions from their respective instruments and manage
communications with their specific instrument across the
IEEE-488 bus interface.

With a large number of common tasks to be performed
at both the measurement and instrument control levels, an
engineered platform architecture conceptualizes and imple-
ments common tasks as modular components separate from
the measurement-specific tasks, so as to minimize task
duplication and to ensure consistency across measurements.
The modular concept is extended to include instrument driv-
ers and IEEE-488 bus management and control. As many
instruments may be required in an IOT system, a large num-
ber of instrument drivers are required. The instrument driver

is a program that controls a specific instrument such as a fre-
quency synthesizer, spectrum analyzer, or power meter. Each
instrument driver is implemented as a separate module. With
a library of such instrument drivers, a diverse set of measure-
ments can be implemented. Low-level IEEE-488 bus man-
agement can be modularized as a set of functions which is
independent of any particular instrument driver. Low-level
bus functions can then be called by instrument drivers or
other programs requiring IEEE-488 bus communications
with a device connected to the bus, such as another computer
system.

Multiple Measurement System

In response to the growing complexity of communica-
tions satellites, multiple, concurrent measurement and net-
work capabilities, including remote access and control,
became IOT system requirements or desirable features.

1

 A
multiple-measurement system can perform multiple mea-
surements for any given time interval rather than just a single
measurement. In a multiple-measurement system, many
instruments are connected to the computer and can be
selected in different combinations to perform different mea-
surements on the DUT at the same time. With the availability
of reasonably priced, powerful computers, such as engineer-
ing workstations, with better processing and storage capaci-
ties than before, a multiple-measurement system can be
implemented, providing improved system utilization. How-
ever, the multiple-measurement system introduces new
requirements for measurement scheduling and equipment
sharing, as well as concurrent operation. Networking capa-
bilities add other requirements.

Measurement Scheduling

In the single-measurement system, different measure-
ments are performed sequentially with different combina-
tions of instruments stimulating and measuring the DUT.
Each measurement ties up the entire system for the duration
of the measurement. If simultaneous measurements are
desired, scheduling and allocation of hardware resources
become important issues. For example, it may be desirable to
measure the stability behavior of a spacecraft characteristic
(e.g., the local oscillator frequency or e.i.r.p) by measuring it
at periodic intervals over some duration of time. If the mea-
surement system is allocated to this one measurement, no
other measurements can be performed during the allocated
time period. This scheme wastes much of the system’s
resources and utility because high-cost microwave measure-
ment hardware is tied up for a long time period with possibly
lengthy intervals between measurements, when the instru-
ments sit idle. For example, if a particular spacecraft charac-
teristic was to be measured once per hour every day for a
week, an unscheduled system would make the instrumenta-
tion unavailable to other measurements for a whole week. If

955

the measurement required five minutes each time it was per-
formed, the system would not be utilized 92 percent of the
time—a considerable waste of system resources.

This undesirable situation leads to the requirement for
measurement scheduling, in which the equipment resources
are time-shared among multiple, scheduled measurements.
The rationale for a measurement scheduler is analogous to
the early days of computing, when job schedulers were
developed to increase utilization of expensive computer
hardware. Similarly, with a measurement scheduling algo-
rithm, different measurements can be scheduled to have
access to the limited hardware, which is typically the con-
straining factor for performing multiple measurements.

Networking and Remote Measurements

Remote control and networked system operation are
desirable system features for a number of reasons. First, the
spacecraft-under-test may be visible in one part of the world,
while the spacecraft testing experts may be located in
another part of the world. The time and expense to move the
spacecraft experts to another part of the world is a significant
obstacle. Even when it is necessary to do so, the expert’s
ability to perform measurements is time-limited. The quan-
tity of data that can be obtained is restricted, and perhaps the
quality of the data may suffer. Under such circumstances, the
expert’s creativity is restricted.

With suitable networking and software capabilities, the
user does not have to be physically colocated with the mea-
surement hardware. A networked system architecture pro-
vides the capability for remote control. Because engineering
workstations offer extensive networking capabilities, remote
control and distributed systems become feasible and desir-
able in state-of-the-art IOT and monitoring system architec-
tures.

With a suitable network architecture the expert can con-
trol a measurement from one location, while the actual mea-
surement is performed elsewhere. By extension, a network
of measurement sites can be connected to a central site
where the spacecraft experts are located. Data can be col-
lected centrally for database storage, analysis, and presenta-
tion. If the expert can conduct measurements from one
location without time and space restrictions, creative analy-
sis is enhanced. The scheduler overcomes time constraints,
while the wide-area network (WAN) capability overcomes
space and geography constraints. The expert can perform
tests whenever convenient. Creative insights often occur
under such unstressed circumstances. The comparison with
computing is between batch processing and interactive pro-
cessing. When batch processing was dominant, a user sub-
mitted a job to the computing center, and a few hours later
picked up the output. This slow process curtailed creativity,
but it was the best that could be done to maintain high CPU
utilization. Later, when interactive systems became more

widely available, people were encouraged to “try things”
while on-line because the feedback was immediate. Insights
were more likely to occur in this less rigid interactive mode
than in the batch-oriented systems.

Measurement Processing And
 Control Platform (MPCP)

Because of increasing satellite complexity and capacity
from generation to generation, more demanding require-
ments are placed on computer-controlled IOT and monitor-
ing systems, as discussed above. At COMSAT Laboratories
increasing IOT system complexity led to a fundamental shift
in strategy for the system and measurement architecture to
accommodate these new requirements. Earlier systems had
been implemented in which each measurement was a self-
contained entity, with the limitations previously described.
The shift in architectural strategy resulted in the concept of
an engineered platform architecture for constructing new
measurements in a time-efficient manner, while also provid-
ing the value-adding characteristics of modularity, functional
specialization, consistency, flexibility, upgradability, and
expandability. COMSAT Laboratories’ IOT system and mea-
surement architecture is one in which common-function
building blocks are separated from the measurement and
separately implemented.

The resulting MPCP, developed over a period of several
years, is an operating system-like collection of measurement
software components designed specifically to facilitate the
rapid, efficient implementation and deployment of IOT,
monitoring, and other measurement systems. MPCP is built
on the UNIX System V operating system and executes in a
UNIX-based engineering workstation hardware and net-
working environment. Figure 2 depicts the platform architec-
ture as an extension of the multiuser, multitasking UNIX
operating system.

MPCP Modules

MPCP consists of a number of core building blocks
arranged in hiearchical layers, forming a “platform” on
which automated IOT systems can be built (see Figure 2.).
The building blocks communicate through well-defined
interface protocols. Modules lower in the structure are closer
to the hardware and provide services to upper layer modules.

The Datapool, Alarm Handler, and Scheduler modules
execute as independent UNIX processes. These processes
communicate with each other and with other processes, such
as measurements, via mail messages packaged and delivered
by the MPCP Mail Subsystem. The Mail Subsystem, a criti-
cal component of MPCP, provides interprocess communica-
tions between processes residing on the same or

different

machines connected via a local area network (LAN), and
will be discussed later in this paper in the context of a dis-
tributed processing environment and system architecture.

956

The MPCP Datapool is a central repository of the mea-
surement system’s shared information and common data
resources. It provides a pool of shared data for multiple pro-
cesses residing on the same or different machines spread
throughout the measurement system network.

The MPCP Alarm Handler centrally manages alarms
that occur throughout the system. The MPCP Alarm Handler
is notified, via mail, of alarm conditions detected by other
measurement system processes, and displays the alarm or
alarms to the user. Alarm messages are tailored to the indi-
vidual measurement system processes, and can be easily
customized to the specific requirements of a particular sys-
tem implementation.

The MPCP Scheduler schedules measurements and
makes available hardware and equipment resources to
requesting measurements on a first-come, first-served basis.
The Scheduler is discussed in more detail at a later point in
this paper within the context of the multiple, concurrent
measurement system.

The MPCP Instrument Drivers Library contains a set of
instrument drivers for a variety of measurement equipment.
Each driver performs high-level instrument command and
control via the IEEE-488 bus to the respective instrument.
Drivers have been implemented for spectrum analyzers; fre-
quency, phase, and modulation measurement instruments;

frequency and waveform synthesizers; power and voltage
measurement instruments; RF switch control; and data
acquisition units. With the existing large base of instrument
drivers in the MPCP Instrument Library, new instrument
drivers can be added relatively easily by copying and modi-
fying an existing driver.

Service providers such as the instrument drivers, mail
system, and database services are supported by several lower
level services: an Input Handler, IEEE-488 bus control func-
tions, standardized data formatting and handling, and user
interface supporting services.

The Input Handler is an event handler dispatcher that
functions as a kernel for MPCP, providing system I/O ser-
vices to the other MPCP modules. When an event occurs
(e.g., a mouse movement, mouse button click, or a key press-
ing from the keyboard), the Input Handler performs the
required input and/or output operation by making the appro-
priate system calls to the UNIX operating system. The Input
Handler allows I/O to be handled in a central module and in
a consistent manner across all MPCP modules.

The functions in the linkable IEEE-488 library serve as
the interface between MPCP modules, such as instrument
drivers, and the I/O transactions on the IEEE-488 bus. Some
services that can be called by the client program, such as an
instrument driver, include writing a command string to the

MPCP

Datapool Alarm
Handler Scheduler

COSDAF
Print

Instrument
Drivers

Mail
System

COSDAF
Plot Database

Input
Handler

IEEE 488
Drivers COSDAF User

Interface

Error Handling

MPCP Function
Libraries

UNIX Platform

Figure 2.

Measurement Processing and Control Platform Provides Tested Building Blocks

957

instrument; reading response strings from an instrument;
addressing the instrument to talk or listen; and performing a
serial poll to the instrument or device.

An error handling building block implements a set of
functions for handling errors and exceptions in a consistent
and unified manner throughout the system. When an error is
encountered, each module in the execution path, from the
highest level to the lowest, writes its part of a concatenated
error message onto a stack. The concatenated error message
is recorded in an error log file and displayed, providing the
user a detailed description of the circumstances of an error.
This stacked error message concept considerably aids trou-
bleshooting, since each error message records the chain of
circumstances and events leading to an error.

The lowest level of the MPCP architecture is a collec-
tion of linkable libraries. When building automated test sys-
tems such as IOT facilities, certain tasks are encountered
repeatedly. To eliminate repeated reprogramming of these
basic tasks, they are gathered into libraries of object code
functions that can be linked into application programs, such
as measurement programs, and reused between applications.
The MPCP libraries fall into three categories: measurement
support utilities, mathematical and statistical functions com-
monly encountered in IOT systems, and general-purpose
system utilities. They provide a large number of logically
grouped low-level services.

The MPCP Measurement Support Library contains util-
ity functions commonly required when implementing IOT
measurements. It includes functions for such tasks as calcu-
lating spacecraft e.i.r.p., input flux, path loss, range to space-
craft, spacecraft gain, spreading factor, Doppler shift,
subsatellite point, and other similar functions.

The MPCP Math Library contains mathematical func-
tions applicable to IOT measurement systems such as trigo-
nometric functions; linear regression; statistical parameter
determination such as mean and standard deviation of a data
set; minimum-maximum determination; numerical integra-
tion; decibel calculations and conversions to linear form; and
interpolation.

The MPCP Utility Library includes routinely required
functions such as compass calculations and transformations,
calendar manipulations, list and string processing functions,
and date and time manipulations.

The MPCP Measurement-User Interface (MUI) (not
shown in Figure 2) supports the implementation of GUIs that
are separate from the actual measurement process. An MUI
is provided for each measurement, giving the user a user-
friendly, graphically oriented, X Window-based interface
mechanism for configuring a measurement, as well as sys-
tem control functions. The user inputs measurement parame-
ters with a mouse and keyboard while viewing windows on
the display. Because the measurement process is separate
from the MUI, the user can schedule a measurement to be
run at a later time. The MUI communicates the measurement

parameters and setup information to the Scheduler via mail
messages delivered by the Mail Subsystem. When initially
displayed, the MUI fills in the window with default values,
which the user can edit using the mouse and keyboard. The
MUI checks the user’s keyboard input for range and type
entry errors and performs consistency checks on the entered
parameters. The MPCP Measurement-User Interface is
implemented with Open Software Foundation’s OSF/Motif
GUI toolkit and conforms to OSF/Motif style guidelines.

The GUI uses a pointing methodology in which the user
moves an on-screen pointer with a mouse to a desired action
or selection on the display, and then selects it by pressing a
button on the mouse. This type of interface is highly visual
and intuitive, rather than character-based. It allows the user
to “point” to the desired item rather than having to accurately
remember and type in commands, such as required in “com-
mand-line” user interfaces typified by the earlier IBM PC
and older mainframe environments. Figure 3 shows an
example of an X-Window, OSF/Motif-compliant user inter-
face window.

The graphically based user interface is easy to use, even
by inexperienced operators, as well as being easy to remem-
ber because the user does not have to remember esoteric
command sequences and codes. At the same time, this newer
style of user interface is designed to accommodate the more
experienced user’s need for operational flexibility and
power. The interface communicates to the user in the termi-
nology and nomenclature of the specific application, so that
the user is confronted with an immediately familiar working
environment.

A particular application of GUI technology is the MPCP
System Mimic Panel, a capability that schematically mimics
and displays in a window the status and configuration of an
earth station, and can provide station control from the win-
dow if appropriate hardware connections are installed. The
System Mimic Panel is shown in Figure 4.

The System Mimic Panel displays the operational status
of switches, instruments, and other station equipment. It can
display the current signal path through the station. With
appropriate hardware connections and by using the mouse to
click on a displayed switch, the user can control the position
of the switch hardware. The MPCP System Mimic Panel is a
general-purpose capability that can be readily adapted to dis-
play and control the configuration of any specific station.

The GUI technology, being adopted by increasing num-
bers of computer manufacturers and software applications
developers, is the result of over 30 years of intensive
research and development activity by many individuals and
organizations, and has been driven by the persistent and
expanding need to create more effective, human-oriented
man-machine interfaces.

5

The MPCP Database Services subsystem (refer to Fig-
ure 2.) stores all raw measurement data taken by the mea-
surement system and allows subsequent searching to retrieve

958

measurement data. File management has been standardized
and centralized, and is implemented in the COMSAT Stan-
dard Data Format (COSDAF) module, shown in Figure 2.
COSDAF provides standardized storage and retrieval func-
tions for measurement data and static text files. Spacecraft
configuration files, frequency plans, and earth station
antenna gain and calibration information are stored as static
text files. Measurement data and text files are stored with
ASCII characters in a standardized format, permitting easy
editing and importing into other programs.

Since all measurements require printing and plotting
services, these tasks are implemented as a separate set of ser-
vices provided by MPCP. Format and style are generalized
and stored in “style” files, with each measurement type hav-
ing its own customized style file. By using editable style
files, the actual print and plot device drivers are imple-
mented as generic modules. Flexibility is maintained by
implementing data-driven drivers that read the style files for
specific prints and plots. The style and appearance can be
changed by simply editing the style file, not the device
driver.

MPCP Plotting Services performs post-measurement
plotting of measurement data, as well as concurrent plotting
on the display for some measurements as they are running.
Many different types of data plots to either soft (i.e., CRT
displays) or hardcopy devices are supported for both real-
time measurement plotting and post-measurement data anal-
ysis.

The MPCP Interactive Plotting Package (not shown in
Figure 2) provides an interactive mechanism for manipulat-
ing and editing measurement data, enabling creative, flexible
data analysis and presentation. The MPCP Interactive Plot-
ting Package allows the user to perform extensive post-mea-
surement data analysis and provides a general-purpose
capability to prepare finished, report-quality plots and
graphs. The data on a plot can be manipulated and edited in
various ways: points can be cut and pasted; scales, axes, and
labels can be changed; graphs or points can be annotated
and/or marked. The plot can be zoomed in or out. New data
points can be added via the keyboard, mouse, and/or from
existing files. The data from one or more files can be plotted
on the same graph as the data from another file. Various data

Figure 3.

Graphically-Based User Interface Window Provides Fill-in-the-Blank Format

959

transformations are supported: two or more traces can be
merged or summed. Or, one can be subtracted from the other
(e.g., a calibration file is subtracted from a measurement file,
or one measurement trace is subtracted another). Finished
plots can be stored and retrieved.

MPCP Printing Services supports printing to both soft
(i.e., CRT displays) and hardcopy devices. Printouts are gen-
erated automatically at the conclusion of a measurement and
as a result of a user request.

Multiple Concurrent Measurements Supported

The typical IOT and/or monitoring system installation
requires a considerable investment in expensive, high-
quality microwave measurement equipment and ancillary
hardware. Therefore, it is highly desirable to maintain a high
percentage of utilization of the equipment. This can be
achieved by implementing a system that supports equipment
sharing via scheduling and multiple, concurrent measure-
ment operation.

A principal building block in the MPCP is a first-come
first-served measurement Scheduler that can schedule unat-
tended, noninteractive measurements (i.e., without a user in
attendance). The MPCP Scheduler is an independent UNIX
process that runs continuously to manage and queue all job
requests from users and to start jobs at appropriate times. It
is responsible for sharing and allocating resources such as
measurement hardware; handling Remote/Local control set-
tings of instrumentation; and providing the means for a user

to determine the status of a job that is running in the back-
ground, such as an unattended stability measurement. When-
ever the UNIX operating system is running, the Scheduler
program executes in background mode, accepting requests
for jobs and resources. Jobs are run based on the requested
time and date and the availability of limited resources, usu-
ally the measurement and earth station equipment. The
Scheduler resolves conflicts of measurements scheduled for
the same time on a first-come first-served basis, although pri-
ority-driven scheduling or other scheduling algorithms can
also be implemented. Since the Scheduler can launch jobs
that perform unattended measurements, it permits measure-
ments to be made during low-usage hours, thus increasing
the system’s overall utilization.

In addition to measurement scheduling, a second desir-
able feature in the multiple-measurement system is concur-
rent operation. In an IOT facility, measurement hardware is
typically the limiting resource. However, if this not the case,
there is no reason the system should not be able to carry out
two or more measurements concurrently. For example, if one
measurement requires the use of one of two up-link synthe-
sizers and the spectrum analyzer, while a second measure-
ment requires the use of the other up-link synthesizer and a
phase noise test set, the system should be able to support
both measurements concurrently. Concurrent operation
increases overall utilization of the system when hardware
availability is not the limiting constraint. This capability is
important because it is highly desirable to minimize the

Figure 4.

MPCP System Mimic Panel Shows Station Configuration And Status

960

overall testing time during an IOT acceptance test and dur-
ing anomaly investigation. Testing time on a new spacecraft
is expensive because the spacecraft is in non-revenue-
generating mode for its owner, who desires an operational
spacecraft as soon as possible after the launch.

1

Distributed Processing and Networked Architecture

With the availability of networking technology, distrib-
uted IOT system architectures can be implemented. Figure 5
illustrates COMSAT Laboratories’ network architecture for
automated IOT and monitoring systems.

Multiple processors and other networks can be con-
nected to create a distributed system architecture, providing
several benefits to the user organization. The processing load
can be distributed to different computers, easing the compu-
tational load on any one machine, while also providing cost-
effective redundancy. System resources such as additional
measurement instruments, processing capability, disk stor-
age capacity, peripherals, and communications hardware can
be added incrementally and only when needed. Expensive
peripherals such as laser printers and plotters can be shared
among many users. Remote control can be provided over a
WAN or dedicated data link using a suitable internet router

and modem combination. By adding system resources incre-
mentally and only when required, capital investment can be
better managed during the system’s life cycle. Advances in
technology can be accommodated as newer, better, and faster
displays, central processing units, memory, disc storage,
printers, plotters, and communications devices become
available. The user organization is not locked in and held
captive to aging technology.

A key requirement for implementing a distributed sys-
tem architecture is the ability of separate processes to com-
municate with one another when the processes reside on the
same or

different

 workstations connected over one or more
networks. The MPCP Mail Subsystem provides interprocess/
inter

machine

 mail communications capability for message
exchange between such processes as the measurement-user
interface, the Scheduler, the Datapool, and the measurement
in order to accomplish hardware sharing, data sharing, coor-
dinated job scheduling, and job canceling.

The interprocess/intermachine capability of MPCP Mail
Subsystem also provides the measurement system with the
remote access, control, and communications capabilities
required to support multi-station and remote system opera-

Modem

Modem

Terminal

X Work Station

Macintosh or PC Network

Computer

Printer Plotter

Printer Plotter

X Display

Terminal

Router

Link

Router

Computer

Figure 5.

Network Architecture Permits Remote Access And Control Of Measurement Hardware

961

tion across dedicated low-capacity serial data links or WANs
at speeds as low as 2,400 bit/s.

A significant application of this remote communications
capability is the display of the same X Window image on a
remote workstation as is being displayed on the central
workstation. Normally, X Window processes residing on dif-
ferent network-connected workstations communicate with
one another through 50-

Ω

 coaxial cables using the 10-Mbit/s
channel capacity available on the LAN. Thus, it is virtually
impossible to send X Window bit-mapped window images
through a 2,400-bit/s serial data link with any kind of accept-
able throughput.

The MPCP Mail Subsystem enables such communica-
tions through a low-capacity 2,400-bit/s link. With the addi-
tion of internet hardware routers at both ends of the modem-
connected data link, as shown in Figure 5, the measurement
system’s LAN is extended to include a distant workstation,
as if it were locally connected. Processes running on the
local and remote workstations communicate with one
another across the link by exchanging TCP/IP-compliant
messages via the Mail Subsystem. A remote workstation,
running locally its own copy of an X Window display pro-
cess, can be updated via high-level mail messages sent by
the central workstation across the serial link, without chok-
ing on the low-capacity data link. Similarly, the user at the
remote workstation can send commands to the central work-
station across the link via other high-level mail messages.
Therefore, a replicated X Window image can be displayed at
the remote workstation as at the central workstation, and can
provide the same measurement and data processing capabili-
ties as at the central workstation. In this system architecture,
it is unnecessary to send the large number of bits associated
with an X Window image across the low-capacity data link.
High-level mail messages suffice, with little real-time degra-
dation other than transmission delay through the link.

In summary then, the building-block components of the
Measurement Processing and Control Platform provide com-
mon services required by IOT and monitoring system mea-
surements, such as instrument drivers; graphical user
interfaces; data processing, including storage, retrieval, plot-
ting, and printing; interprocess and

intermachine

 mail com-
munications; IEEE-488 bus management; error handling;
and support libraries of linkable object modules. In addition,
MPCP supports concurrent measurement scheduling and
distributed processing in a networked environment, includ-
ing remote control.

Recent Systems Experience

MPCP modules are employed in the implementation of
two systems recently developed by COMSAT Laboratories:
the IOT system for the European Telecommunications Satel-
lite Organization (EUTELSAT) in 1990 and the RF Terminal
Supervisor (RFTS) in 1991 for NASA’s Advanced Commu-

nications Technology Satellite (ACTS) program. These sys-
tems have proven the validity of the MPCP architectural
concept, design, implementation, and multi-system applica-
tion.

Conclusion

This paper discussed the requirements for automated,
computer-controlled measurements in the areas of instru-
ment control, user interface, and data processing. The insight
that common tasks comprise up to 80 percent of a measure-
ment’s overall tasks led to the development at COMSAT
Laboratories of a fundamentally different system architec-
ture—an integrated platform of specialized building blocks,
each implemented and optimized separate from the specifics
of measurements. This architecture resulted in the Measure-
ment Processing and Control Platform—a platform of reus-
able building blocks built on the multiuser, multitasking,
network-supporting UNIX operating system.

References

[1] P.- H. Shen, V. Riginos, S. Bangara, “In-Orbit Testing
of Communications Satellites: The State of the Art,”
Global Satellite Communications Symposium,
Nanjing, China, May 1991.

[2] S. Bangara, V. Riginos, and K. Fullett, “Maritime
Communications System Package of Inmarsat V,” 3rd
International Conference on Satellite Systems for
Mobile Communications and Navigation, June 1983,
London, England.

[3] K. Fullett and V. Riginos, “The Use of Desktop Com-
puters for Measurement Systems as Applied to In-
Orbit Testing of Communications Satellites,”

Micro-
wave System News

, Vol. 13, No. 2, February 1983, pp.
77–86.

[4] I. Dostis, C. Mahle, V. Riginos, and I. Atohoun, “In-
Orbit Testing of Communications Satellites,”

COM-
SAT Technical Review

, Vol.7, No. 1, Spring 1977,
pp. 197–226.

[5] S. Card, T. Moran, A. Newell,

The Psychology of
Human-Computer Interaction

, published by Lawrence
Erlbaum Associates. 1983.

